# MA - Mathematics

## MA 102 Foundations of College Math

## MA 112 Precalculus: Function & Graphs

## MA 117 Difference Equations and Linear Algebra

## MA 121 Differential Calculus

This is the first of a two-semester, six-credit calculus sequence. We begin the first semester by reviewing functions from several perspectives (symbolic, numeric, and graphic). For most of the course we study differential calculus, emphasizing how we can use calculus to understand real-world problems such as police radar detection, laying an oil pipeline around a swamp, and understanding motion. Specific topics include limits, continuity, derivatives, the mechanics of finding derivatives, instantaneous rate of change, concavity, the extreme value theorem, and optimization. We use technology extensively, and we also focus on learning how to explain mathematics orally and in writing. The sequence MA 121-MA 122 is considered to be equivalent to MA 131.

## MA 122 Integral Calculus

This is the second of a two-semester, six-credit calculus sequence. In this course we study topics in integral calculus, emphasizing how we can use calculus to understand real-world problems such as fluid pumping and lifting, how rain catchers are used in city drain systems, and how a compound bow fires an arrow. Specific topics include optimization, related rates, antiderivatives, definite integrals, the fundamental theorems of calculus, integration by substitution, integration by parts, applications of integration, and an introduction to differential equations. We use technology extensively, and we also focus on learning how to explain mathematics orally and in writing. The sequence MA 121-MA 122 is considered to be equivalent to MA 131.

## MA 131 Calculus of Single Variable Functions

This course covers all aspects of single-variable calculus including derivatives, antiderivatives, definite integrals, and the fundamental theorem of calculus. We highlight how we can use calculus to understand real-world problems such as laying an oil pipeline around a swamp, fluid pumping and lifting, and how rain catchers are used in city drain systems. We use technology extensively, meeting in the computer lab once each week. We also focus on learning how to explain mathematics orally and in writing. This is the same material that is covered in MA 121-122, except this is an accelerated course that does not review precalculus material.

## MA 141 Introduction to Mathematical Modeling

This course is an introduction to sequences, difference equations, differential calculus, differential equations, and linear algebra. This is the first course in a two semester, eight credit, sequence in differential equations and linear algebra. Specific topics include analytical and numerical solutions to difference equations and first-order and second-order linear differential equations, separation of variables, the method of undetermined coefficients, phase line analysis, stability of equilibrium, systems of equations, matrix equations, determinants, matrix inverses, Gaussian elimination, and eigenvalues and eigenvectors. There is a heavy emphasis on mathematical modeling and applications. We use technology extensively, and we also focus on learning how to explain mathematics orally and in writing. Prerequisite: High school mathematics through pre-calculus. A basic understanding of differential calculus is strongly recommended.

## MA 189 Special Topic

## MA 201 Mathematics for Elementary Education I

## MA 202 Mathematics for Elementary Education II

## MA 207 Introduction to Statistics

## MA 232 Differential Equations and Linear Alg I

## MA 233 Multivariable Calculus

## MA 250 Mathematical Writing

## MA 289 Special Topic

## MA 306 Real Analysis

## MA 314 Probability and Statistics for Engineers

## MA 315 Probability and Statistics

## MA 321 Math in the Mountains

## MA 328 Modern Applications of Discrete Math

A look at some applications of discrete mathematics that emphasize such unifying themes as mathematical reasoning, proof, algorithmic thinking, modeling, combinatorial analysis, graph theory, and the use of technology. Possible topics include proof techniques, cryptography, primes and factoring, computer passwords, networking problems, shortest paths, scheduling problems, building circuits, and modeling computation.

## MA 334 Differential Equations and Linear Alg II

This is the second course (after MA 141) in a two course sequence in differential equations and linear algebra. In this course, we focus on both systems of differential equations, with special attention given to modeling, linearization, and equilibrium analysis; as well as the mathematical language of systems-linear algebra, especially transformations, orthogonality, vector spaces, inner product spaces and the eigenvalue/eigenvector problem. We will motivate the material through applications such as population models, structural, and electrical systems, and linear algebra applications such as 3-D imaging, Markov processes, and Leslie matrices. Technology will again play a major role in this course, as we will have frequent computer demonstrations in class and weekly computer labs to explore the quantitative aspects of these topics. Students will have the opportunity to explore topics beyond the textbook on group projects throughout the semester.